401 research outputs found

    Lithium Storage in Nanoporous Complex Oxide 12CaO•7Al2O3 (C12A7)

    Get PDF
    Porous materials have generated a great deal of interest for use in energy storage technologies, as their architectures have high surface areas due to their porous nature. They are promising candidates for use in many fields such as gas storage, metal storage, gas separation, sensing and magnetism. Novel porous materials which are non-toxic, cheap and have high storage capacities are actively considered for the storage of Li ions in Li-ion batteries. In this study, we employed density functional theory simulations to examine the encapsulation of lithium in both stoichiometric and electride forms of C12A7. This study shows that in both forms of C12A7, Li atoms are thermodynamically stable when compared with isolated gas-phase atoms. Lithium encapsulation through the stoichiometric form (C12A7:O2−) turns its insulating nature metallic and introduces Li+ ions in the lattice. The resulting compound may be of interest as an electrode material for use in Li-ion batteries, as it possesses a metallic character and consists of Li+ ions. The electride form (C12A7:e−) retains its metallic character upon encapsulation, but the concentration of electrons increases in the lattice along with the formation of Li+ ions. The promising features of this material can be tested by performing intercalation experiments in order to determine its applicability in Li-ion batteries

    Defects and Dopants in CaFeSi2O6: classical and DFT simulations

    Get PDF
    Calcium (Ca)-bearing minerals are of interest for the design of electrode materials required for rechargeable Ca-ion batteries. Here we use classical simulations to examine defect, dopant and transport properties of CaFeSi2O6. The formation of Ca-iron (Fe) anti-site defects is found to be the lowest energy process (0.42 eV/defect). The Oxygen and Calcium Frenkel energies are 2.87 eV/defect and 4.96 eV/defect respectively suggesting that these defects are not significant especially the Ca Frenkel. Reaction energy for the loss of CaO via CaO Schottky is 2.97 eV/defect suggesting that this process requires moderate temperature. Calculated activation energy of Ca-ion migration in this material is high (>4 eV), inferring very slow ionic conductivity. However, we suggest a strategy to introduce additional Ca2+ ions in the lattice by doping trivalent dopants on the Si site in order to enhance the capacity and ion diffusion and it is calculated that Al3+ is the favourable dopant for this process. Formation of Ca vacancies required for the CaO Schottky can be facilitated by doping of gallium (Ga) on the Fe site. The electronic structures of favourable dopants were calculated using density functional theory (DFT)

    Electronegativity and doping in Si1-xGex alloys

    Get PDF
    Silicon germanium alloys are technologically important in microelectronics but also they are an important paradigm and model system to study the intricacies of the defect processes on random alloys. The key in semiconductors is that dopants and defects can tune their electronic properties and although their impact is well established in elemental semiconductors such as silicon they are not well characterized in random semiconductor alloys such as silicon germanium. In particular the impact of electronegativity of the local environment on the electronic properties of the dopant atom needs to be clarified. Here we employ density functional theory in conjunction with special quasirandom structures model to show that the Bader charge of the dopant atoms is strongly dependent upon the nearest neighbor environment. This in turn implies that the dopants will behave differently is silicon-rich and germanium-rich regions of the silicon germanium alloy

    Encapsulation and substitution of Fe in C12A7 (12CaOâ‹… 7Al2O3)

    Get PDF
    Framework modification by doping of Fe3+ ions in C12A7 has been recently considered for tailoring its thermal, electronic, and optical properties. Here, we use density functional theory calculations to predict the thermodynamical stability and electronic structures of a single Fe atom encapsulated and substituted by both stoichiometric and electride forms of C12A7. In both forms, exoergic encapsulation is observed, and the resultant complexes exhibit magnetic behavior inferring that they are promising magnetic material candidates for spintronic devices. While the electride form of C12A7 transfers 0.86e to Fe, only a small amount of charge (0.14e) is transferred from Fe to the cages in the stoichiometric form. Substitution of Fe for Al in both forms of C12A7 is endoergic, and the electride form is more favorable by 1.60 eV than the stoichiometric form. Both encapsulation and substitution introduce Fe sub-bands between the top of the valence band and the Fermi energy level, featuring them as promising materials in catalysis, optics, and electronics

    Encapsulation of heavy metals by a nanoporous complex oxide 12CaO · 7Al<sub>2</sub> O<sub>3</sub>

    Get PDF
    The nanoporous oxide 12CaO ⋅ 7Al2O3 (C12A7) offers the possibility of capturing large concentrations of environmentally damaging extra-framework species in its nanopores. Using density functional theory with a dispersion correction, we predict the structures and energetics of some heavy metals (Cr, Ni, Cu, Zn, Cd, Hg, and Pb) trapped by the stoichiometric and electride form of C12A7. In the stoichiometric form, while Zn, Cd, Hg, and Pb are encapsulated weakly, Cr, Ni, and Cu exhibit strong encapsulation energies. The electride form of C12A7 shows a significant enhancement in the encapsulation of Cr, Ni, Cu, and Pb. Successive encapsulation of multiple Cr, Ni, Cu, and Pb as single species in adjacent cages of C12A7 is also energetically favorable

    The encapsulation selectivity for anionic fission products imparted by an electride

    Get PDF
    The nanoporous oxide 12CaO•7Al2O3 (C12A7) can capture large concentrations of extra-framework species inside its nanopores, while maintaining its thermodynamical stability. Here we use atomistic simulation to predict the efficacy of C12A7 to encapsulate volatile fission products, in its stoichiometric and much more effective electride forms. In the stoichiometric form, while Xe, Kr and Cs are not captured, Br, I and Te exhibit strong encapsulation energies while Rb is only weakly encapsulated from atoms. The high electronegativities of Br, I and Te stabilize their encapsulation as anions. The electride form of C12A7 shows a significant enhancement in the encapsulation of Br, I and Te with all three stable as anions from their atom and dimer reference states. Successive encapsulation of multiple Br, I and Te as single anions in adjacent cages is also energetically favourable. Conversely, Xe, Kr, Rb and Cs are unbound. Encapsulation of homonuclear dimers (Br2, I2 and Te2) and heteronuclear dimers (CsBr and CsI) in a single cage is also unfavourable. Thus, C12A7 offers the desirable prospect of species selectivity

    A novel load-balancing scheme for cellular-WLAN heterogeneous systems with cell-breathing technique

    Get PDF
    This paper proposes a novel load-balancing scheme for an operator-deployed cellular-wireless local area network (WLAN) heterogeneous network (HetNet), where the user association is controlled by employing a cell-breathing technique for the WLAN network. This scheme eliminates the complex coordination and additional signaling overheads between the users and the network by allowing the users to simply associate with the available WLAN networks similar to the traditional WLAN-first association, without making complex association decisions. Thus, this scheme can be easily implemented in an existing operator-deployed cellular-WLAN HetNet. The performance of the proposed scheme is evaluated in terms of load distribution between cellular and WLAN networks, user fairness, and system throughput, which demonstrates the superiority of the proposed scheme in load distribution and user fairness, while optimizing the system throughput. In addition, a cellular-WLAN interworking architecture and signaling procedures are proposed for implementing the proposed load-balancing schemes in an operator-deployed cellular-WLAN HetNet

    Energy efficiency in heterogeneous wireless access networks

    Get PDF
    In this article, we bring forward the important aspect of energy savings in wireless access networks. We specifically focus on the energy saving opportunities in the recently evolving heterogeneous networks (HetNets), both Single- RAT and Multi-RAT. Issues such as sleep/wakeup cycles and interference management are discussed for co-channel Single-RAT HetNets. In addition to that, a simulation based study for LTE macro-femto HetNets is presented, indicating the need for dynamic energy efficient resource management schemes. Multi-RAT HetNets also come with challenges such as network integration, combined resource management and network selection. Along with a discussion on these challenges, we also investigate the performance of the conventional WLAN-first network selection mechanism in terms of energy efficiency (EE) and suggest that EE can be improved by the application of intelligent call admission control policies
    • …
    corecore